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Abstract— 
 

In response to the immediate need for high-quality AI-generated contents (AIGC), natural language processing 

(NLP) services, particularly those offered at the edge (edge NLP), have developed. As an example of a popular edge 

NLP service for mobile keyboards on user devices, we examine distributed inference for next-word prediction in 

order to provide it more context. Keeping with this, we want to optimize related metrics, which means that we want 

to improve QoS by increasing the expected click-through rate (CTR), QoE by minimizing user impatience, and 

sustainability by keeping energy use within budget. We also consider the real world, where it is impossible to tell 

which natural language processing (NLP) model is the most accurate. Combining online learning and online control, 

we provide a novel distributed inference method for online next-word prediction with user impatience (DONUT) 

that balances the trade-offs among connected metrics and assesses the accuracy of model predictions. In accordance 

with our theoretical investigation, DONUT achieves sub-linear regret (loss of CTR), ensures restricted user 

impatience, and maintains budgetary energy use. We demonstrate DONUT's superior performance compared to 

competing baseline methodologies and its adaptability to various situations using numerical simulations.  

Index Terms—Online learning, online control, distributed inference, edge NLP, and next-word prediction. 

 

Introduction 
A number of user-focused applications have begun using NLP services to produce high-quality AIGC (AI-generated 

content) during the AI revolution [1]. Robots can now understand human speech thanks to the combination of the 

two, which lowers the barrier to entry for AI and opens the door for a future when communicating with AI seems as 

natural as chatting to a person. For a long time, end customers seeking NLP services have relied on robust models 

housed on the cloud. Even while cloud services are quite accurate, they may have high latency and occasional 

unavailability.  
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Figure 1: Edge Natural Language Processing for Next Word Prediction. 1) User input is generated at the user device. 

2) A subset of NLP models is selected by the user. 3) The model input is received by the user. 4) Inference is 

performed on each model that has been selected. 5) The user device receives predicted next words from the selected 

NLP models. 6) The user device aggregates the words by removing duplicates and presents the aggregated words to 

the user. 7) The user selects one predicted word that they like. 

via wireless networks, which makes maintaining real-time guarantees difficult [2]. One such alternative is edge 

NLP, which uses NLP services provided by servers located at the network's periphery. Thanks to the closeness of 

edge servers to consumer devices and their extensive computing capabilities, high-quality natural language 

processing (NLP) services with very quick response times are now accessible to end users [3, 4].  

The majority of research on edge NLP has been on distributed training, with the primary issue being "How can we 

train NLP models across edge servers to enable NLP services?" [12] Here, we're taking a fresh approach by looking 

at the most effective methods to apply natural language processing models trained on edge networks, such as GPT 

[11], BERT [7], and N-gram [5]. This approach is known as distributed inference because it aims to use the 

inference capabilities of trained models across edge servers that are geographically distant. To set the scene, we 

examine distributed inference for next-word prediction, a popular and non-trivial consumer-facing NLP service (see 

Fig. 1). By anticipating user actions based on their mobile keyboard inputs, next-word prediction may streamline 

inputs [13].  

 
TABLE I 

COMPARISONOFINFERENCECAPABILITYAMONGVARIOUSNLPMODELSINTERMOFDIFFERENTFACTORS 
 

 

 
 

providing assistance. Ensemble learning provides strong support for this theory [14], since it is usual practice to use 

a mixture of experts (MOE) to improve performance over a single expert model [15]. The user device, however, is 

unable to communicate with an infinite number of NLP models due to rising overheads (such as energy cost and 

latency). This raises the question of which trained NLP models the user's device should utilize for distributed 

inference—a real-world model selection problem. The two reasons given below make this model selection challenge 

difficult and non-trivial. The inference capabilities of natural language processing (NLP) models is one of the 

criteria used to make a model selection choice [16]. In particular, we take into account three variables—prediction 
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accuracy, inference delay, and energy consumption—that might differ between NLP models. Although N gram often 

uses less energy and has shorter inference latency than transformer-based models[17], its prediction accuracy is 

typically poorer, as demonstrated in Table I. In addition, because deployed NLP models are not always customized 

to particular users, the prediction accuracy of these models is often user-dependent and unknown in advance. As a 

matter of fact, edge server NLP models include a diverse set of pre-trained models [18], the training corpus of which 

could differ significantly from the input corpus provided by users. The accuracy of the predictions may be estimated 

with the use of an online learning approach that gathers input via the dynamic selection of multiple models. 

Secondly, the sustainability of user devices, quality-of-service (QoS), and quality-of-experience (QoE) are all 

interrelated criteria in the model selection dilemma. The prediction click-through rate (CTR), or the rate at which the 

end user accepts the predicted words, is a standard metric for quality of service (QoS). It seems to reason that 

models with good accuracy in predictions should also have good prediction CTR and quality of service. In terms of 

quality of experience, we define it as the presence of user impatience owing to delayed predictions (i.e., when the 

time it takes to forecast the next word is longer than the maximum tolerance latency). Users may get very impatient 

and experience poor quality of experience due to models with long inference delays. For consumer devices with 

limited battery capacity, it is important to keep energy usage within budget in order to promote sustainability. As a 

result, models that use a lot of power might wind up going over their allotted amount and endangering sustainability. 

Adaptively adjusting the relative relevance of these connected measures requires an online control approach. In light 

of the above, it should be clear that the model selection issue is in essence a sequential decision-making problem 

with uncertainty, which is consistent with the context of brute-force learning [19]. Most bandit learning approaches, 

however, aren't suitable for immediate adoption since choosing a model requires a combination of online learning 

and online control in order to balance linked metrics and evaluate prediction accuracy. A possible consequence of 

inefficient online learning with erroneous estimate is that it may prejudice the selection of less-than-ideal NLP 

models for future control choices. However, it may be challenging to balance various goals, and poor feedback and 

learning efficiency might be the outcome of poorly implemented control choices. For example, the user device could 

misjudge the performance of some models if they are seldom used, leading to missed opportunities for optimum 

selections. Here, we present DONUT, a new eldistributed inference method for online next-word prediction with 

user impatience, as a solution to the crucial model selection challenge. What follows is a synopsis of our work's 

primary contributions and important outcomes: Creating models: Here, we delve into distributed inference's next-

word prediction model selection challenge. Section III details our goal of maximizing prediction CTR for high QoS 

and minimizing user impatience for high QoE while keeping energy usage controlled. Our approach has the 

potential to be expanded to include other edge NLP services, such as emoji prediction, in addition to next-word 

prediction [20]. We also provide light on how to implement edge NLP in the future, which might be useful for 

services like Codex-based auto-programming tools [21] and ChatGPT-based dialog systems [11]. To address the 

model selection issue, we provide DONUT, an algorithm that combines online learning with online control, from the 

perspective of limited bandit learning (Section IV). We demonstrate in our theoretical analysis that DONUT 

minimizes the overall user impatience over time as O(1/α + V/α), where T is the number of rounds and V and α are 

initial adjustable parameters, and the time-averaged regret as O(1/V + α/V + logT/T). In addition, DONUT ensures 

that the user device's energy usage remains within the specified limits (Section V). To assess DONUT's efficacy, we 

run comprehensive simulations. They prove our theoretical analysis is correct and show that DONUT is superior 

than alternative web-based algorithms (Section VI) 

 

RELATED WORKS  
 

Topic A: Natural Language Processing at the Edge The possibilities for delivering user-centric services via the use 

of edge-based resources have been greatly enhanced by the widespread adoption of edge computing. Edge NLP has 

arisen to capitalize on this trend by providing real-time, high-quality services like next-word prediction, emoji 

prediction, text categorization, audio recognition, etc. [22]. Here, we mostly go over papers that are relevant to the 

next-word prediction service. Training new natural language processing (NLP) models directly at the edge, using 

federated learning, or by fine-tuning pre-trained models, is the primary emphasis of most previous work [12]. A 

lightweight natural language processing model for next-word prediction termed CIFG (Coupled Input-Forget Gate) 

is trained via federated learning in work [13]. Additional work [23] uses a character-level recurrent neural network 
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based on the CIFG architecture to tackle the out-of-vocabulary issue. The training of customized models is 

addressed in work [24], which proposes three distinct algorithms—hypothesis-based clustering, data interpolation, 

and model interpolation—to address different real-world requirements. To train individualized models for next-word 

prediction, the authors of work [25] suggest combining sophisticated model aggression with an attention 

mechanism. For better next-word prediction performance, work[26] integrates federated fine-tuning with centralized 

model pre-training and pretrained word embeddings. Training high-performance distributed models lies at the heart 

of all the aforementioned federated learning studies. "How can we train new NLP models in a distributed manner for 

edge NLP?" is the question they want to answer. To help with edge NLP, our work takes a different tack. Our main 

objective is to take advantage of distributed inference, which allows trained models to make inferences at the edge. 

Consequently, "how to utilize trained NLP models in a distributed mannerforedgeNLP"[27] is where our attention is 

focused. Supporting next-word prediction services with high QoS and QoE in a sustainable way, distributed 

inference allows user devices to use heterogeneous trained NLP models at the edge. Part B: Edge Distributed 

Inference Distributed inference, which goes beyond edge NLP, is a new and exciting way to use edge-trained 

models to provide real-time applications with excellent quality. Much of the current literature on distributed 

inference focuses on how to divide up a single trained model across groups of untrained users. Inference overheads, 

including computational expenses and energy usage, are meant to be layer-wise distributed to edge servers or 

devices [28]. To take use of nearby computing resources for real-time inference, work[29] dynamically divides 

neural models across edge servers and devices. In order to reduce inference latency, research [30] separates the 

layers of directed acyclic graph (DAG) neural models into their own execution units. In order to optimize inference 

latency and throughput, researchers have been working on dividing up neural models and putting them into edge 

clusters [31]. Model partitioning applications have also started to surface. Research [32] investigates the use of 

partition-based distributed inference for real-time video analysis inside an Internet-of-Things system with limited 

resources. Partitioning models is done in work [33] to speed up distributed inference for edge video streams. Our 

study takes a novel tack by deploying several trained models at the edge rather than just one. Our goal is to improve 

the system's performance by using a mixture-of-expert method, which is achieved by modelselection and aggregate 

prediction. Thirdly, we formulate the system model and problems. Here we lay out the distributed inference system 

concept and problem formulation for next-word prediction. In particular, we zero in on the key models selection 

challenge, where we aim to maximize sustainability, quality of experience, and quality of service all at once. A non-

trivial yet simple setup is the subject of this study. More specifically, we take into account an edge natural language 

processing system that offers the next-word prediction service to a single user, and it has (N − 1) edge servers. There 

is a singular trained natural language processing model installed on each user device and edge server. N models with 

different levels of prediction accuracy, inference delay, and energy consumption are thus implied. The models on the 

user device are indexed by zero, and we index them using the set N ⋜ {0,1,...,N−1}. The system is assumed to 

function on a round-robin basis with a predetermined time horizon, denoted by t ∈{0,...,T−1}. It is crucial to 

consider the end-to-end latency when accessing each model for inference [34], since edge NLP services are often 

very latency sensitive. In particular, the inference latency of the local model on the user device is what is meant by 

the end-to-end latency. The end-to-end latency for models running on an edge server is the sum of the inference 

latency and the transmission latency. The inference latency is the time it takes for the model to make predictions, 

while the transmission latency is the time it takes for the user device and the edge server to receive the results of 

those predictions. 2 Prior to making any model selection choices, we presume it is possible to quantify the 

associated inference latency and trans mission delay. Using analytical performance modeling with previous 

information about the NLP model [39] or a data-driven method using pre-trained machine learning models on 

different hardware configurations [37], [38] are two ways to evaluate the inference latency of NLP models [36]. 

Testing wireless channels using test packages [40], [41] or predicting latency using a model of the communication 

protocol of the channel (e.g., WiFi [42]) are two ways to assess the transmission delay of wireless communication 

between the user device and edge servers. 
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TABLE II SUMMARIZATION OF MAIN NOTATIONS 

 
 

Experience Quality: User Restlessness To define QoE, we employ user impatience [44]. In natural language 

processing (NLP) models, user frustration builds up when there is a delay in either the selection process or the 

prediction, meaning that the total latency is longer than the user can bear. To be more precise, we may write Zi(t) as 

the related user impatience for each NLP model i in round t. User irritation with model i rises by one in each round 

if user does not pick model i or if model i's forecast is late; otherwise, it resets to one. From an intuitive standpoint, 

this reset ensures that the user's forecast demands are met promptly, alleviating any built-up irritation. Users' 

impatience with updates is therefore characterized as follows: 

 

 
 

THEORETICAL ANALYSIS  

 
Here we provide the theoretical findings on energy usage, user frustration, and regret. To be more precise, we prove 

the virtual queue's stability in order to validate its fulfillment of the energy consumption requirement under 

DONUT. Following this, we provide the limits of total user impatience and time-averaged regret under DONUT, 
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respectively. Lastly, we demonstrate how user impatience and regret are affected by adjustable factors. The long-

term energy consumption limitation in (6) can be met provided certain models and election policies are in place, 

which would make the proposed energy budget realistic. The maximum feasible region is defined as the collection 

of all possible energy budgets. For example, what if  

 

 

TABLEIII IEEE TRANSACTIONS ONMOBILECOMPUTING, V (LEFT) AND ORDER OF α 
(RIGHT) VERSUS ORDER OF TIME AVERAGES 

 

 

 

 
 
Sketch for the Proof of Theorems 1 and 2. Using Lyapunov optimization methods, we provide the evidence for 

queue stability and limits of user impatience. To start, we build a Lyapunov drift function to describe how the size of 

the queue backlog and user impatience change between rounds. The second step is to establish a maximum 

allowable value for the drift-plus-regret term by including the aim of regret minimization into the Lyapunov drift 

function; we then use the fact that the time-averaged queue backlog size is both limited and constrained to further 

constrain this value. Third, we build a supplementary strategy that prioritizes reducing user impatience by picking 

NLP models with the highest user impatience values right now. By using this auxiliary policy, we are able to 

determine the maximum allowable drift-plus-regret term for all model selection procedures. In the end, we use 

telescoping sum and conditional expectation to wrap up the evidence. Appendix B, which can be accessed online, 

contains the full proof. Notably, the fact that DONUT attains substantial queue stability for finite values of V and α 

indicates that constraint (6) is fulfilled, as shown by Theorem 1 [51]. Notably, the time-averaged total user 

impatience is constrained to be O(1/α + V/α), as shown by Theorem 2. The total user impatience is sub-linearly 

limited with the right order of V, for example, O(logT). Declaration No. 3 (Regret). The time-averaged respect 

across T rounds is constrained under DONUT. 

SIMULATION RESULTS  
Ubuntu 20.04, Intel(R) Xeon(R) Gold 6230, and a 32 GB Quadro GV100 GPU are the specifications of the server 

that runs our simulations. We average each simulation outcome across 30 separate trials. One user device and 

fourteen edge servers, or fifteen NLP models, are the components of the system we're considering for next-word 

prediction using edge NLP. There are 105 operational rounds with the default value of T, and 300 and 1 for the 

parameters V and α, respectively. A DistilBERT [10] model is implemented on the user's device. The servers use 

three distinct natural language processing models: BERT (indexed from 1 to 8), RoBERTa [8] (indexed by 9 and 

10), and ALBERT [9] (indexed from 11 to 14). The prediction accuracies of the Alltheabovemodels, which are pre-

trained natural language processing models taken from the Transformers library [53], vary between 3 and 30%. 

Model selection on natural language processing (NLP) models uses 7–14 J/round of the user device's energy. If you 

choose to use distributed inference with each NLP model, they will all report the top k predictions (with k defaulting 

to 3). For natural language processing models, the in-time prediction probabilities are between 0.7 and 0.95. 

http://www.ijbar.org/


Index in Cosmos 

MAY 2025, Volume 15, ISSUE 2 

UGC Approved Journal 

www.ijbar.org 

ISSN 2249-3352 (P) 2278-0505 (E) 

Cosmos Impact Factor-5.86 

 

 

 

 

 

 

 

 

 

Page | 1365 

 

 

Reuters-21578 [54], Customer Review Datasets [55], and Amazon Product Review Data [56] are the three corpora8 

from which the user inputs are combined in each cycle. Table IV contains the default parameters for the simulation. 

Comparison of DONUT with Other Web-Based Algorithms Here we see how DONUT stacks up against some other 

popular internet algorithms. Focusing on distinct performance indicators and long-term limitations is where these 

algorithms diverge from DONUT. UCB1 prioritizes short-term prediction accuracy above longer-term restrictions 

[19]. For every i in N, the utility is defined as ˆ wi(t)=ˆ μi(t) according to UCB1 [19], where ˆ μi(t) is the UCB 

estimate given in (10). With UCB-Impatience, the user's impatience is minimized while prediction accuracy is 

maximized [45]. The utility, as defined under UCB-Impatience, is ˆ wi(t)=V ˆ μi(t)+αZi(t) for every i in N. 

Evaluation Using Various Criteria: Using a variety of indicators, we compare DONUT's performance to that of other 

online algorithms in Figure 3. Keep in mind that ensuring long-term limitations with minimal user impatience and 

energy consumption is just as important as measuring success by an individual indicator (e.g., prediction CTR). 

While DONUT's prediction CTR is lower than other online algorithms, it uses less energy and causes less user 

irritation. In comparison to UCB1 and UCB-Energy, DONUT reduces user frustration by up to 97% and energy 

usage by up to 16.6%. Under DONUT, as shown in Figure 3(b) and (c) respectively, the total user impatience over 

time is limited, and the energy consumption over time is maintained below the budget, which is shown as the black 

dash line in Figure 3(c)). The findings show that DONUTin successfully decreases user impatience while meeting 

the energy usage restriction. Comparison With the Use of an Integrated Metric: We provide an integrated measure to 

assess the overall performance of DONUT and other online algorithms in relation to prediction CTR, user 

impatience, and energy usage, in order to more clearly demonstrate its outperformances. Here is how the integrated 

metric 9 is defined: 

 

 
 

 
where the indication variable is located. To be more precise, e=1 if the energy consumption limitation belongs to (6). 

is fulfilled if and only if the time-averaged energy consumption is equal to or less than the energy that is budged, 

and it is set to zero otherwise. One would assume that an algorithm's performance will improve in direct correlation 

with its IM. As a result of user impatience and increased energy consumption per unit, a bigger IM leads to higher 

rises in prediction CTR. UCB-Energy ensures the energy usage limit and optimizes prediction CTR [57]. The utility 

ˆ wi(t) is defined as V ˆ μi(t) − αQ(t)Wi(t) for every i in N under UCB Energy. In terms of IM, impatience achieves 

worse results than DONUT. This finding provides further evidence that DONUT is capable of striking a good 

balance between prediction CTR, user impatience, and energy consumption. 

 

 
 

Fig. 3. Performances of DONUT and other online algorithms. 

 
Parameters V and α and Their Impacts Two versions of DONUT are proposed to study the system performance 

under various learning techniques. In Algorithm 1, on line 4, the UCB term is replaced with alternative bandit 

learning algorithms. Donat-Epsilon acronym: The exploitation term ¯ μi(t), where i∈N, is substituted for the 

UCBestimatein(10) in each iteration. With a probability of 1 −, ∈{0,0.01,0.1}, the user device chooses the edge 

servers that have the greatest model utilities (18). In all other cases, it chooses n NLP models at random and in a 

uniform manner. "In each round, the exploration term γi(t) is substituted with the following expression: γi(t)= log 
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(max{T/(N •Ni(t)),1})/Ni(t)" [49]. Here, we assess how well DONUT and its variations perform with varying values 

of V and α. As shown in (18), V and α assess the readiness of selection for natural language processing models that 

exhibit low energy usage, high user impatience, and high prediction accuracies. Figure 5 displays the results of our 

evaluation of the impact of parameter V on the performances of DONUT and its variations. V may take on values 

between 1 and 500, but α is always set at 1. The chart shows that at increasing values of V, DONUT and its variants 

cause more user impatience and more energy usage, but less regrets. Take V as an example; from 1 to 500, DONUT 

experiences a 17.0% decrease in regrets, a 41.4% rise in user impatience, and a 4.2% increase in energy 

consumption. In particular, the importance of accurate predictions to the model's utility (18) climbs in direct 

proportion to the value of V. Consequently, DONUT would naturally prioritize increasing prediction CTR above 

decreasing user frustration and energy usage. Figure 5 shows that by adjusting V, DONUT and its variations are able 

to accomplish effective trade-offs among connected measures. In Fig. 6, we assess how parameter α impacts the 

performance of DONUT and its variables. V is set at 300 while the value of α varies from 1 to 200. According to the 

figure, DONT and its variations experience greater regrets as the value of α increases, while less user impatience and 

more energy consumption are the results. On average, DONUT and its variations produce 1.5% higher energy usage, 

14.3% more regrets, and 7.7% less user irritation as the value of α changes from 1 to 200. These results demonstrate 

that DONUT and its derivatives accomplish adjustable trade-offs via parameter α. Interestingly, DONUT-Epsilon 

with =0 outperforms DONUT and other variables even when students do not engage in exploration while studying 

online. The reasoning behind this is that user impatiences will be minimized by selecting under-explored models 

when they reach a high enough level. To rephrase, our algorithm design indirectly encourages exploration via the 

online control mechanism. Part C: The Impact of Model Selection Quantities Optional Varieties for Fixed-Model 

Selection: We compare DONUT's performances under various model selection numbers in Figure 7. A value 

between 1 and 4 is assigned to the model selection number n, and 50 J is the energy budget b. Compared to a single 

option (n = 1), DONUT with several choices (n = 3, 4) has the potential to be superior in terms of prediction CTR, 

use impatience, and energy consumption, all while staying within budget. When it comes to prediction CTR, using 

several choices increases the likelihood of accurately predicting the user's next words and makes the prediction more 

trustworthy, even when dealing with unreliable wireless connections. In terms of user impatience, as seen in (3), 

more choices increase the likelihood of reducing irritation for numerous models.  

 

 
Fig. 7. Performances of DONUT under different model selection numbers.  

 

 
energy use; nevertheless, DONUT ensures the long-term energy consumption limit, which maintains such usage 

under budget, even when frequent choices lead to increased consumption for wireless transmission. Quantities for 

Fixed and Flexible Model Selection: Figure 8 shows a comparison of DONUT's operating results with both rigid and 

dynamic model selection parameters. For situations where the model selection number is fixed, we assign 3 as the 

model selection number; for situations where the number is adjustable, we limit it to no more than 3. According to 

the findings, DONUT with a variable model selection number increases prediction CTR and decreases energy usage 

compared to the fixed model selection number instance, but it also increases user impatience. The rationale behind 

this is that DONUT focuses on a subset of NLP models due to its variable model selection number, which prevents it 

from picking NLP models with poor accuracy and high energy consumption. Therefore, it is unable to decrease user 

irritation by selecting models with high levels of impatience. Section D. Implications of Top-k Prediction Outcomes 

Fig. 9 shows our investigation into DONUT's performance in scenarios where NLP models provide top-k prediction 

results for k with varying values. We simulate a range of k values from 1 to 10, taking into account the usual range 
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of 5 to 25 anticipated next words shown to the user and the fixed value of 3 for the model selection number [13]. 

The values of V and α are 300 and 1, correspondingly. Table V summarizes the detailed prediction accuracies of all 

NLP models; Fig. 9(a) illustrates the evolution of prediction accuracies of NLP models indexed from 0 to 5 as k 

rises. Each NLP model's prediction accuracy grows monotonically with increasing values of k, according to the 

findings. 
 

TABLE V PREDICTION ACCURACIES OF NLP MODELS WITH DIFFERENT VALUES OF k 

 

 
 
Figures 9(b) and (c) show how DONUT performs with several values of k as V grows from 10 to 500. As an 

example, when V goes from 10 to 500, the overall prediction CTR increases by 20.3%, user impatience increases by 

37.0%, and energy consumption increases by 4.10%, as shown by the blue curves in Fig. 9(b) and (c), respectively, 

for k = 3. A greater value of k for DONUT results in a higher overall prediction CTR, as shown in Figure 9(b), while 

obtaining the same amount of total user patience. For a total user impatience value of 90, for instance, the total 

prediction CTR grows by 158.13% from 1 to 9 for some value of k. The pattern in the change in total prediction 

CTR and total energy usage as k rises is comparable to what we see in Fig. 9(c). In particular, for a given total 

energy consumption number, DONUT produces better overall prediction results when k is larger. For a total energy 

consumption value of 19.6, for instance, the overall prediction CTR grows by 166.52% from 1 to 9 for all values of 

k. The rationale for this is because the number of authorized licensees, which are confined to the University of 

Punjab, increases as k becomes higher. Retrieved from IEEE Xplore on October 9, 2024 at 05:58:29 UTC. 

Limitations are in place. The WAN Getal Application. The user's device receives the results of 5707 predictions for 

next words: an analysis of energy-aware distributed inference. A greater prediction CTR is the outcome of the user's 

increased likelihood of discovering the favorable following words or phrases. In addition, when k becomes greater, 

the amount by which the overall prediction CTR is increased drops. As an example, there is a 73.77% rise in the 

overall prediction CTR when k grows from 1 to 3, but only a 10.76% increase when k increases from 7 to 9. 
 

Conclusion 
 
With a focus on the standard next-word prediction service, we investigated distributed inference for edge NLP in 

this article. Our approach involves recasting the primary model selection issue as a multi-objective, online restricted 

optimization problem. Maximizing the predicted click-through rate, minimizing user impatience, and guaranteeing 

energy consumption within budget are all necessary to solve the issue. Our proposal, DONUT, seeks to address the 

model selection issue by combining online learning with online control, as seen from the perspective of limited 

bandit learning. Achieving sub-linear regret, ensuring constrained user impatience, and maintaining energy 
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consumption with budget are all shown by theoretical study of DONU. By an average of 160%, DONUT 

outperformed competing online algorithms according to the suggested integrated measure, as confirmed by the 

simulation results.  
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